Efficient Synthesis of the γ-Amino-β-hydroxy Acid Subunit of Hapalosin

Godwin C. G. Pais and Martin E. Maier*

Institut für Organische Chemie, Universität Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany

Received February 2, 1999

Introduction

The 1,2-amino alcohol substructure represents an important replacement of the peptide bond in a number of peptidomimetics.^{1,2} Enantiomerically pure 1,2-amino alcohols allow the formation of heterocycles which rank among the most popular chiral auxiliaries. Moreover, this structural element can be found in amino sugars,³ sphingosins,⁴ and also some acids. Representative examples for the latter include statine and (3S,4S)-4-amino-3-hydroxy-5-phenylpentanoic acid, which are the key constituents of renin inhibitors.⁵⁻⁷ Furthermore, the 3-hydroxy-4-amino acid related to 3 is part of the cyclic depsipeptide hapalosin (1) (Scheme 1).^{8–12} This natural product turned out to be quite active in reversing multidrug resistance caused by overexpression of the P-glycoprotein. To synthesize analogues of hapalosin, 13,14 an efficient and flexible synthesis of the acid 3 was sought. The requirements to incorporate this substructure into hapalosin fragment 2 are protecting groups at the 3-hydroxy and the 4-N-methylamino function. Amino acids of type **3** are usually prepared by elongation of phenylalanine.^{9–12} Other routes to the amino alcohol group involve the asymmetric hydrogenation of an enaminoketone,¹⁵ the Sharpless aminohydroxylation reaction,¹⁶ and the Lewis acid promoted coupling reactions of oxazins with nucleophiles.17

- (2) For a review on γ -amino- β -hydroxy acids, see: Yokoyama, T.; Yuasa, Y.; Shibuya, S. Heterocycles 1992, 33, 1051-1078.
- (3) Sibi, M. P.; Lu, J.; Edwards, J. J. Org. Chem. 1997, 62, 5864-5872
 - (4) Somfai, P.; Olsson, R. Tetrahedron 1993, 49, 6645-6650.
 - (5) Greenlee, W. J. *Pharmacol. Res.* **1987**, *4*, 364–374.
 (6) Weidmann, B. *Chimia* **1991**, *45*, 367–376.
- (7) Shinozaki, K.; Mizuno, K.; Oda, H.; Masaki, Y. Chem. Lett. 1992, 2265 - 2268.
- (8) Stratmann, K.; Burgoyne, D. L.; Moore, R. E.; Patterson, G. M. L.; Smith, C. D. J. Org. Chem. 1994, 59, 7219-7226. (9) Dinh, T. Q.; Du, X.; Armstrong, R. W. J. Org. Chem. 1996, 61,
- 6606-6616.
- (10) Ghosh, A. K.; Liu, W.; Xu, Y.; Chen, Z. Angew. Chem. 1996, 108, 73-75.
- (11) Wagner, B.; Beugelmans, R.; Zhu, J. Tetrahedron Lett. 1996, 37, 6557-6560.
- (12) Okuno, T.; Ohmori, K.; Nishiyama, S.; Yamamura, S.; Nakamura, K.; Houk, K. N.; Okamoto, K. Tetrahedron 1996, 52, 14723-14734.
- (13) Dinh, T. Q.; Smith, C. D.; Armstrong, R. W. J. Org. Chem. 1997, 62, 790-791.
- (14) Dinh, T. Q.; Du, X.; Smith, C. D.; Armstrong, R. W. J. Org. Chem. 1997. 62. 6773-6783.
- (15) Doi, T.; Kokubo, M.; Yamamoto, K.; Takahashi, T. J. Org. Chem. 1998, 63, 428-429.
- (16) Reddy, K. L.; Sharpless, K. B. J. Am. Chem. Soc. 1998, 120, 1207 - 1217.
- (17) Aoyagi, Y.; Williams, R. M. Tetrahedron 1998, 54, 10419-10433.

Scheme 1

Recognizing that the amino function might originate from a carboxylic group through a Curtius rearrangement,^{3,18,19} we devised an aldol reaction/Curtius rearrangement strategy for compound 3 (Scheme 1). The realization of this route is presented in this paper.

Results

The two stereocenters of the target molecule were established by an Evans aldol reaction.²⁰ Thus, enolization of the acylated oxazolidinone 4 with di-n-butylboron triflate²¹ in the presence of diisopropylethylamine at 0 °C followed by the addition of acrolein at -78 °C gave rise to the aldol product 5.²² The use of the Hünig's base proved to be crucial since with triethylamine the yield dropped to 10%. Subsequent hydrolysis with lithium hydroxide and hydrogen peroxide²³ furnished the acid 6. With acid 6 being somewhat unstable, although it can be stored at -25 °C, it was used immediately in the next step. Treatment of 6 with diphenylphosphoryl azide and triethylamine and heating to 80 °C induced Curtius rearrangement¹⁹ and intramolecular trapping²⁴ of the isocyanate to the oxazolidinone 7. The vicinal coupling constant $J_{4,5} = 6.7$ Hz is in accord with a *syn*-orientation of the two substituents.²⁵ To facilitate the hydrolysis of the oxazolidinone 7, it was converted to the corresponding BOC derivative 8.26 Stirring of 8 with cesium carbonate in methanol provided the N-protected amino alcohol 9 in 76% yield. The melting point as well as the optical rotation matched the reported values.^{27,28} Both of these

- 62, 6080-6082.
- (20) Gage, J. R.; Evans, D. A. Org. Synth. 1989, 68, 83–91.
 (21) Inoue, T.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1980, 53, 174– 178.
- (22) Heathcock, C. H.; Finkelstein, B. L.; Jarvi, E. T.; Radel, P. A.; Hadley, C. R. J. Org. Chem. **1988**, *53*, 1922–1942. (23) Evans, D. A.; Britton, T. C.; Ellman, J. A. Tetrahedron Lett.
- **1987**, 28, 6141-6144.
- (24) Wittenberger, S. J.; Baker, W. R.; Donner, B. G. Tetrahedron 1993, 49, 1547-1556.
- (25) Sakaitani, M.; Ohfune, Y. J. Am. Chem. Soc. 1990, 112, 1150-1158.
- (26) Ishizuka, T.; Kunieda, T. Tetrahedron Lett. 1987, 28, 4185-4188

(27) Hanson, G. J.; Lindberg, T. *J. Org. Chem.* **1985**, *50*, 5399–5401. (28) Ito, H.; Ikeuchi, Y.; Taguchi, T.; Hanzawa, Y.; Shiro, M. *J. Am.* Chem. Soc. 1994, 116, 5469-5470.

⁽¹⁾ For a review on 1,2-amino alcohols, see: Ager, D. J.; Prakash, I.; Schaad, D. R. Chem. Rev. 1996, 96, 835-875.

⁽¹⁸⁾ Ghosh, A. K.; Liu, W. J. Org. Chem. 1996, 61, 6175-6182. (19) Ghosh, A. K.; Hussain, K. A.; Fidanze, S. J. Org. Chem. 1997,

papers describe the synthesis of **9** by an addition of vinylmagnesium bromide to an α -amino aldehyde. However, this approach produces a mixture of both diastereomers which have to be separated. In the next step the hydroxyl group was protected with chloromethyl methyl ether (MOM chloride) to give compound **10**. This protecting group was chosen over a silicon-based one because the N-methylation conditions can cause cleavage of a neighboring silicon protecting group. Having the ether **10** in hand, N-methylation to the alkene **11** was achieved using sodium hydride (NaH) and methyl iodide (MeI).⁹ The final steps served to establish the carboxylic function from the double bond. This was initiated by hydroboration of **11** using 9-borabicyclo[3.3.1]nonane (9-BBN) followed by oxidative workup.²⁵

The resulting primary alcohol **12** was then oxidized to the carboxylic acid **3** by the use of sodium hypochlorite and TEMPO (Scheme 2).¹⁶ These conditions proved to be superior in comparison to the oxidation with pyridinium dichromate (PDC) in DMF.

With a view to the synthesis of functionalized pyrrolidines, we investigated the conversion of the double bond to the carboxylic function with a free NH group in the molecule. This route was studied with the alkene **13** which is available by silylation of the alcohol **9**. As described above, hydroboration delivered the primary alcohol **14**. Oxidation of this compound with PDC in DMF gave directly the lactam **15**.²⁹ This could be opened under mild conditions to the methyl ester **16** (Scheme 3).

In summary, we could show that the aldol reaction with acrolein followed by a Curtius rearrangement and conversion of the double bond to a terminal carboxylic function allows the stereocontrolled synthesis of γ -amino- β -hydroxy acids such as the one in hapalosin. Moreover, this strategy should open up a new route to optically active nitrogen heterocycles.³⁰

Experimental Section

All melting points were recorded on a Büchi melting point B-540 apparatus. Optical rotations were recorded on a JASCO P-1020 polarimeter. IR spectra were recorded on a Jasco FT/ IR-430 spectrometer. ¹H (250 MHz) and ¹³C (62.5 MHz) spectra were recorded in CDCl₃. Unless mentioned, all the reactions were carried out under an argon atmosphere. Anhydrous solvents were obtained as follows: diethyl ether, tetrahydrofuran, and toluene by distillation from sodium and benzophenone; methylene chloride by distillation from calcium hydride; dimethylformamide was first stirred over calcium hydride. decanted, and distilled under reduced pressure. Tributylborane was prepared from boron trifluoride etherate and butylmagnesium bromide in dry ether under argon.³¹ Di-*n*-butylboron triflate was prepared according to Mukaiyama's procedure.²¹ The chiral auxiliary 4 was prepared according to the literature procedure.^{32,33} Aqueous sodium hypochlorite (13% active chlorine, ACROS) was diluted to 0.43 M. Hünig's base was distilled from KOH before use. Triethylamine was distilled from calcium hydride prior to use. Column chromatography was performed with E. Merck 40–63 μ m silica gel. Thin-layer chromatography was carried out with Polygram Sil G/UV254 from Macherey-Nagel.

(3R,4S)-4-[N-(tert-Butoxycarbonyl)-N-methylamino]-3-(methoxymethoxy)-5-phenylpentanoic Acid (3). Compound 12 (1.80 g, 5.10 mmol) was dissolved in acetone (40 mL) and added to an aqueous 5% NaHCO₃ solution (13.5 mL). This magnetically stirred heterogeneous mixture was cooled to 0 °C and treated sequentially with KBr (62 mg, 0.52 mmol) and TEMPO (0.84 g, 5.39 mmol). Sodium hypochlorite (15 mL, 6.45 mmol) was then added dropwise, while the mixture was vigorously stirred and maintained at 0 $^\circ\text{C}.$ After 1 h, additional NaOCl (5.8 mL, 2.50 mmol) was added, and stirring was continued at 0 °C for an another hour followed by addition of a 5% NaHCO₃ solution (19 mL). Following evaporation of the acetone, the aqueous layer was washed with ether (2 \times 50 mL, to remove TEMPO impurities), acidified to pH 6 with 10% aqueous citric acid, and extracted with ethyl acetate (3 \times 100 mL). The combined organic phases were washed with water and brine, dried over NaSO₄, and concentrated to give the crude acid. Pure acid 3 (1.5 g, 80%) was obtained by flash chromatography (petroleum ether/ethyl acetate, 1:1): TLC (40% ethyl acetate in petrol ether): $R_f = 0.37$; $[\alpha]^{22}_D = -39.8$ (c 0.6, CHCl₃); IR (neat)

(30) Yoda, H.; Yamazaki, H.; Kawauchi, M.; Takabe, K. Tetrahedron: Asymmetry **1995**, *6*, 2669–2672.

(31) Johnson, J. R.; Snyder, H. R.; Van Campen, M. G., Jr. J. Am. Chem. Soc. **1938**, 60, 115–121.

(32) Evans, D. A.; Britton, T. C.; Dorow, R. L.; Dellaria, J. F., Jr. *Tetrahedron* **1988**, *44*, 5525–5540.

(33) Gage, J. R.; Evans, D. A. Org. Synth. 1989, 68, 77-82.

⁽²⁹⁾ Ishibuchi, S.; Ikematsu, Y.; Ishizuka, T.; Kunieda, T. *Tetrahe-dron Lett.* **1991**, *32*, 3523–3526.

3449–2622 (br), 1733 (s), 1692 (s) cm⁻¹; ¹H NMR (both rotamers) δ 1.19 (br s, 9 H, minor), 1.25 (s, 9 H, major), 2.43–2.62 (complex, 6 H), 3.17 (dd, J= 11.1, 13.5, 2.7 Hz, 1H), 3.35 (s, 3 H, minor), 3.36 (s, 3 H, major), 4.04–4.15 (br m, 2 H), 4.66 (d, J= 7.1 Hz, 1H), 4.75 (d, J= 7.1 Hz, 1 H), 7.07–7.22 (m, 5 H); 13 C NMR (both rotamers) δ 28.1, 28.3, 34.5, 38.0, 56.2, 56.3, 76.5, 77.3, 97.1, 97.3, 126.2, 126.4, 128.3, 128.4, 129.0, 138.5, 155.7, 175.8; MS (EI), m/z (%) 368 [M⁺ + 1] (10); HRMS (EI) calcd for $C_{19}H_{29}$ -NO₆ 367.19948, found 367.20129.

(4S)-4-Benzyl-3-[(2S,3R)-2-benzyl-3-hydroxy-4-pentenoyl]-1,3-oxazolidin-2-one (5). To a solution of 4³² (5.80 g, 18.7 mmol) in CH₂Cl₂ (38 mL) at 0 °C was added di-n-butylboron triflate (22.9 mL, 22.9 mmol, 1 M in CH₂Cl₂) dropwise. This was followed by the dropwise addition of Hünig's base (4.20 mL, 24.4 mmol). After 1 h at 0 °C, the solution was cooled to -78 °C and freshly distilled acrolein (1.9 mL, 28.1 mmol) was added over 2 min. After being stirred for 1 h at -78 °C, the reaction mixture was allowed to warm to room temperature over 1 h and kept at this temperature for 2 h. The mixture was poured into pH 7 buffer (42 mL), and then ether (55 mL) was added. The layers were separated, and the aqueous layer was extracted with ether (2 imes50 mL). The combined layers were washed with brine (30 mL), and the solvent was removed with a rotary evaporator. The residue was dissolved in methanol (55 mL), cooled to 0 °C, and treated dropwise with H_2O_2 (18.75 mL of a 30% aqueous solution). After 60 min at 0 °C, the mixture was diluted with water (55 mL), and most of the methanol was removed with a rotary evaporator. The aqueous layer was extracted with ether $(3 \times 50 \text{ mL})$. The combined organic layers were washed with cold 5% HCl (7 mL), saturated aqueous NaHCO₃ (15 mL), and brine (15 mL), dried (Na $_2$ SO $_4$), filtered, and concentrated in vacuo. The residue was purified by flash chromatography (petroleum ether/ethyl acetate, 3:2) to give 5 as a colorless oil (5.4 g, 79%) which solidifies upon standing, mp 45.8-46.8 °C: TLC (petroleum ether/ethyl acetate, 3:2): $R_f = 0.46$; $[\alpha]^{23}_{D}$ +11.75 (*c* 1.22, CHCl₃); IR (neat) 3821 (s), 1777 (s), 1698 (s) cm⁻¹; ¹H NMR δ 2.17 (ddd, J = 4.3, 9.2, 4.0 Hz, 1 H), 2.80 (dd, J =10.1, 3.4 Hz, 1 H), 2.91-3.09 (m, 2 H), 3.92 (dd, J = 6.1, 3.0 Hz, 1 H), 4.03 (dd, J = 1.2, 7.9 Hz, 1 H), 4.39-4.43 (m, 1 H), 4.52-4.62 (m, 2 H), 5.20 (dt, J = 10.4, 1.5 Hz, 1 H), 5.30 (dt, J = 17.1, 1.2 Hz, 1 H), 5.91 (ddd, J = 6.5, 4.2, 6.1 Hz, 1 H), 6.83-6.87 (m, 2 H), 7.10-7.21 (m, 8 H); ¹³C NMR & 33.8, 37.4, 49.8, 55.0, 65.8, 73.9, 117.1, 126.6 127.3, 128.5, 128.9, 129.4, 129.5, 135.1, 137.4, 138.8, 153.5, 174.0; MS (EI), m/z (%) 365 [M] (1); HRMS (EI) calcd for C₂₂H₂₃NO₄ 365.16273, found 365.16983.

(2S,3R)-2-Benzyl-3-hydroxy-4-pentenoic Acid (6). To a solution of the oxazolidinone 5 (5.0 g, 13.7 mmol) in tetrahydrofuran-distilled water (3:1, v/v, 205 mL) was added H₂O₂ (30% aqueous solution, 7.75 mL, 68.42 mmol) at 0 °C via syringe over a 5-min period. This was followed by the addition of lithium hydroxide (1.15 g, 27.37 mmol), dissolved in water (27 mL). Some gas evolved from the clear solution. After stirring for 1 h at 0 °C and for 15 h at room temperature, the excess H₂O₂ was quenched by the addition of sodium sulfite (8.62 g, 68.4 mmol) in distilled water (41 mL). The bulk of the tetrahydrofuran was removed by rotary evaporation at a bath temperature of 25-30 °C, and the resulting mixture was extracted with dichloromethane (3 \times 60 mL) to remove the oxazolidinone auxiliary. The aqueous layer was cooled in an ice bath and acidified to pH 2 with aqueous 1 N hydrochloric acid. The resulting cloudy solution was then extracted with ether (5 \times 60 mL). The combined ether extracts were dried (MgSO₄), filtered, and concentrated. The residue was purified by flash chromatography (50% ethyl acetate in petroleum ether) to give 6 (2.4 g, 85%) as a colorless oil: TLC (petroleum ether/ethyl acetate, 1:1) $R_f =$ 0.38; $[\alpha]^{25}_{D} = -12.85$ (*c* 0.16, CHCl₃); IR (neat) 3412-2056 (br), 1709 (s) cm⁻¹; ¹H NMR δ 2.77–3.01 (m, 3 H), 4.30 (td, J = 3.2, 1.4 Hz, 1 H), 5.18 (dt, J = 10.4, 1.2 Hz, 1 H), 5.27 (dt, J = 17.4, 1.3 Hz, 1 H), 5.78-5.91 (m, 1 H), 6.64 (br s, 2 H), 7.07-7.26 (m, 5 H); $^{13}\mathrm{C}$ NMR δ 33.0, 52.8, 73.0, 117.7, 126.6, 128.6, 128.9, 136.7, 138.8, 178.7; MS (EI), m/z (%) 206 [M⁺] (35), 188 (50), 143 (82)

(4.5,5.R)-4-Benzyl-5-vinyl-1,3-oxazolidin-2-one (7). The hydroxy acid 6 (2.00 g, 9.66 mmol) was dissolved in dry toluene (21 mL), diphenylphosphoryl azide (3.13 mL, 14.49 mmol) followed by triethylamine (3.16 mL, 22.71 mmol) was added, and the resulting mixture was heated at 80 °C for 4 h. After cooling

the reaction mixture to room temperature, the toluene was removed under reduced pressure. The residue was partitioned between ethyl acetate and saturated aqueous NaHCO₃. The organic layer was washed with brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure to give a black residue, which was purified by flash chromatography (40% ethyl acetate in petroleum ether) providing 7 (1.58 g, 80%) as light yellow oil: TLC (40% ethyl acetate in petroleum ether) $R_f = 0.33$; $[\alpha]^{23}_{D} =$ -118.5 (c 1.04, CHCl₃); IR (neat) 3278 (s), 1750 (s) cm⁻¹; ¹H NMR δ 2.54 (dd, J = 2.5, 11.0 Hz, 1 H), 2.74 (dd, J = 9.6, 4.0 Hz, 1 H), 3.96-4.08 (m, 1 H), 5.06 (dd, J = 6.7, 1.2 Hz, 1 H), 5.10 (dd, J = 1.2, 0.9 Hz, 1 H), 5.38 (dt, J = 10.4, 1.2 Hz, 1 H), 5.47 (dt, J= 17.4, 1.3 Hz, 1 H), 5.84–5.97 (m, 1 H), 7.07–7.10 (m, 2 H), 7.15–7.30 (m, 3 H); $^{13}\mathrm{C}$ NMR δ 37.5, 57.2, 80.1, 120.4, 127.2, 129.0, 129.1, 130.78, 136.8, 158.3; MS (EI), m/z (%) 204 [M+ + 1] (5.9); HRMS (EI) calcd for C₁₂H₁₃NO₂ 203.09463, found 203.09147.

(4S,5R)-4-Benzyl-3-(tert-butoxycarbonyl)-5-vinyl-1,3-oxazolidin-2-one (8). A solution of oxazolidinone 7 (1.3 g, 6.40 mmol) in tetrahydrofuran (30 mL) was treated with (Boc)₂O (1.82 g, 8.34 mmol) and triethylamine (1.07 mL, 7.68 mmol) in the presence of DMAP (0.16 g, 1.28 mmol) and the mixture stirred at room temperature for 5.30 h. Excess (Boc)₂O was quenched by the addition of N,N-diethylenediamine (0.17 mL, 1.28 mmol) and the mixture stirred for 10 min. Then ether (100 mL) was added to the reaction mixture which was washed successively with a 1 M aqueous $KHSO_4$ solution, water, a saturated aqueous NaHCO₃ solution, water, and brine. The organic layer was dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography (30% ethyl acetate in petroleum ether) to give 8 (1.84 g, 95%) as colorless needles, mp 72–73 °C: TLC (30% ethyl acetate in petroleum ether) R_f = 0.65; $[\alpha]^{21}_{D} = -13.5$ (*c* 1.0, CHCl₃); IR (KBr) 3606 (w), 3429 (w), 3059 (s), 1803 (s), 1719 (s) cm^{-1}; ^1H NMR δ 1.41 (s, 9 H), 2.85 (d, J = 2.1 Hz, 1 H), 2.87 (s, 1 H), 4.54 (q, J = 6.8 Hz, 1 H), 4.92-4.98 (m, 1 H), 5.29 (dt, J = 10.7, 1.2 Hz, 1 H), 5.44 (dt, J= 17.1, 1.2 Hz, 1 H), 5.62-5.75 (m, 1 H), 7.10-7.25 (m, 5 H); ¹³C NMR & 27.8, 35.6, 59.5, 78.1, 83.9, 120.4, 126.9, 128.7, 129.6, 129.7, 136.4, 148.9, 151.6; MS (EI), m/z (%) 247 [M⁺ + 1 - t-Bu] (7)

(3R,4S)-N-(tert-Butoxycarbonyl)-4-amino-3-hydroxy-5phenylpent-1-ene (9). A mixture of the oxazolidinone 8 (1.80 g, 5.94 mmol) in methanol (80 mL) and cesium carbonate (0.774 g, 2.38 mmol) was stirred for 25 h at room temperature. Then the reaction was quenched with citric acid, and the product was extracted with ethyl acetate, dried (Na₂SO₄), filtered, and concentrated in vacuo. Purification of the residue by flash chormatography (20% ethyl acetate in petroleum ether) gave 1.26 g (76%) of **9** as colorless needles, mp 124.5 °C, lit.²⁷ 125-126.5 °C: TLC (hexane/ethyl acetate, 2:1): $R_f = 0.65$; $[\alpha]^{23}_{D} =$ $-23.9 (c 0.5, \text{CHCl}_3), \text{ lit.}^{27} [\alpha]^{25}_{\text{D}} = -23 (c 1.0, \text{CHCl}_3); \text{ IR (KBr)}$ 3356 (s), 1686 (s) cm $^{-1};$ $^1\mathrm{H}$ NMR δ 1.29 (s, 9 H), 2.61–2.82 (m, 1 H), 2.78 (dd, J = 8.9, 5.5 Hz, 1 H), 3.00 (br s, 1 H), 3.90 (br s, 1 H), 4.16 (s, 1 H), 4.53 (br d, J = 6.4 Hz, 1 H), 5.22 (dt, J =10.4, 1.6 Hz, 1 H), 5.30 (dt, J = 17.4, 1.6 Hz, 1 H), 5.87 (dddd, J = 1.3, 5.5, 4.9, 5.8 Hz, 1 H), 7.11–7.26 (m, 5 H); ¹³C NMR δ 28.3, 36.0, 56.5, 74.6, 79.778, 116.9, 126.4, 128.4, 129.3, 137.0, 138.1, 156.4; MS (EI), m/z (%) 278 [M⁺ + 1] (3.7).

(3R,4S)-N-(tert-Butoxycarbonyl)-4-amino-3-(methoxymethoxy)-5-phenylpent-1-ene (10). Chloromethyl methyl ether (4.00 mL, 49.6 mmol) was added dropwise to a cooled (0 °C) solution of the alcohol 9 (3.00 g, 10.8 mmol) and diisopropylethylamine (17 mL, 100 mmol) of CH₂Cl₂ (15 mL). The reaction mixture was stirred at this temperature for 1 h and then at room temperature for 8 h. Water was added, the two phases were separated, and the aqueous phase was extracted with CH₂Cl₂ (3 \times 100 mL). The combined organic phases were washed with 1 N HCl (3 \times 50 mL), water, and brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography (30% ethyl acetate in petroleum ether as eluent) to give the ether 10 (3.3 g, 95%) as colorless crystals, mp 93-94 °C: TLC (30% ethyl acetate in petroleum ether): $R_f = 0.5$; $[\alpha]^{21}_{D} = -82.2$ (c 1.0, CHCl₃); IR (KBr) 3382 (s), 3083 (m), 3058 (m), 1687 (s), 1032 (s) cm $^{-1}$; $^1\mathrm{H}$ NMR δ 1.25 (s, 9 H), 2.63 (dd, J = 3.4, 10.7 Hz, 1 H), 2.89 (dd, J = 9.5, 4.6 Hz, 1 H), 3.32 (s, 3 H), 3.91 (br s, 1 H), 4.11 (dd, J = 4.2, 6.7 Hz, 1 H), 4.62 (d, J = 6.7 Hz, 1 H), 5.23 (d, J = 15.6 Hz, 1 H), 5.26 (dt, J = 17.5, 1.2 Hz, 1 H), 5.64–5.78 (m, 1 H), 7.08–7.23 (m, 5 H); ¹³C NMR δ 28.3, 35.7, 54.9, 55.8, 79.2, 94.6, 119, 126.2, 128.3, 129.3, 135.1, 138.4, 155.4; MS (EI), m/z (%) 322 [M + 1] (0.1), 266 (0.2).

(3R,4S)-4-[N-(tert-Butoxycarbonyl)-N-methylamino]-3-(methoxymethoxy)-5-phenylpent-1-ene (11). To a cooled (0 ^oC, ice bath) solution of **10** (2.50 g, 7.79 mmol) and MeI (1.0 mL, 15.6 mmol) in DMF (30 mL) was added NaH (0.405 g, 10.12 mmol, 60% in mineral oil) in portions. After complete addition, the ice bath was removed, and the mixture was stirred at room temperature for 15 h. The reaction was quenched with saturated aqueous NH₄Cl, and much of the DMF was removed in vacuo. The mixture was extracted with ethyl acetate (3 \times 30 mL), and the organic layers were washed with water, dried, filtered, and concentrated. The resulting thick liquid was purified by flash chromatography (15% ethyl acetate in petroleum ether) to give 11 (2.50 g, 96%) as a colorless oil: TLC (20% ethyl acetate in petroleum ether): $R_f = 0.63$; $[\alpha]^{22}_D = -154.4$ (*c* 0.3, CHCl₃); IR (neat) 1694 (s) cm $^{-1}$; 1 H NMR (both rotamers, 1:1.4) δ 1.18 (s, 9 H, minor), 1.24 (s, 9 H, major), 2.46 (br s, 3 H, minor), 2.59 (br s, 3 H, major), 2.77-2.83 (complex, 1 H), 3.15 (ddd, J = 14.4, 5.2, 3.7 Hz, 1 H), 3.34 (s, 3 H, minor), 3.35 (s, 3 H, major), 4.03 (br s, 1 H), 4.18 (br s, 1 H), 4.50 (d, J = 6.7 Hz, 1 H), 4.69 (dd, J = 1.6, 5.1 Hz, 1 H), 5.16-5.25 (complex, 2 H), 5.51-5.72 (m, 1 H). 7.08–7.21 (m. 5 H): 13 C NMR (both rotamers) δ 28.2. 28.3. 34.3, 34.6, 55.9, 56.0, 78.6, 79.07, 79.13, 79.5, 93.8, 94.0, 119.2, 119.8, 126.0, 126.2, 128.2, 128.3, 129.0, 135.4, 136.0, 138.9, 155.6; MS (EI), m/z (%) 336 [M⁺ + 1] (7); HRMS calcd for C₁₉H₂₉NO₄ 335.20965, found 335.21414.

(3R,4S)-4-[N-(tert-Butoxycarbonyl)-N-methylamino]-3-(methoxymethoxy)-1-hydroxy-5-phenylpentane (12). To a solution of the alkene 11 (2.00 g, 5.97 mmol) in THF (50 mL) was added 9-borabicyclo[3.3.1]nonane (35.8 mL, 0.5 M solution in hexane, 17.9 mmol) at room temperature. The reaction mixture was stirred for 20 h before it was treated successively with EtOH (11 mL), 6 N NaOH (3.7 mL), and 30% H₂O₂ (7.3 mL). The mixture was heated at 50 °C for 1 h, cooled to room temperature, and extracted several times with ethyl acetate. The combined organic layers were washed with water and brine, dried (Na₂SO₄), filtered, and concentrated in vacuo. The pure alcohol 12 (1.58 g, 75%) was obtained by flash chromatography (50% ethyl acetate in petroleum ether) as colorless oil: TLC (50% ethyl acetate in petroleum ether): $R_f = 0.3$; $[\alpha]^{25}_{D} = -17.8$ (c 0.9, CHCl₃); IR (neat) 3445 (s), 1689 (s) cm⁻¹; ¹H NMR (CDCl₃) (both rotamers) δ 1.15 (s, 3 H, minor), 1.25 (s, 3 H, major), 1.44– 1.97 (m, 2 H), 2.21 (br s, 1 H), 2.49 (s, 3 H, minor), 2.61 (br s, 3 H, major), 2.76–2.81 (complex, 1 H), 3.07 (td, J = 13.7, 3.1 Hz, 1 H), 3.38 (s, 3 H, minor), 3.41 (s, 3 H, major), 3.61-3.83 (m, 2 H), 3.88 (br s, 1 H), 4.19 (br s, 1 H), 4.67 (deformed t, J = 6.3, 4.6 Hz, 1 H), 4.73 (deformed t, *J* = 4.0, 6.7 Hz, 1 H), 7.07–7.22 (m, 5 H); ¹³C NMR (both rotamers) δ 28.1, 28.3, 31.1, 34.1, 34.6, 56.2, 56.4, 58.8, 79.6, 79.8, 97.4, 97.7, 126.1, 126.3, 128.4, 128.9, 129.0, 138.8, 155.5, 155.9; MS (EI), m/z (%) 354 [M⁺ + 1] (2.2); HRMS (EI) calcd for C₁₉H₃₁NO₅ 353.22022, found 353.22531.

(3R,4S)-N-(tert-Butoxycarbonyl)-4-amino-3-(tert-butyldimethylsilyloxy)-5-phenylpent-1-ene (13). A mixture of 9 (1.20 g, 4.33 mmol), tert-butyldimethylsilyl chloride (2.24 g, 9.53 mmol), and imidazole (1.29 g, 19.06 mmol) in DMF (7 mL) was stirred under an argon atmosphere for 2 h. After dilution with ether (50 mL), the mixture was washed with water (5 \times 10 mL), dried over Na₂SO₄, filtered, and concentrated under reduced pressure to give a pale yellow oil which was purified by flash chromatography (5% ethyl acetate in petroleum ether) to give 1.52 g (90%) of 13 as colorless crystals, mp 50-51 °C: TLC (10% ethyl acetate in petroleum ether) $R_f = 0.74$; $[\alpha]^{22}_D = -18.9$ (c 0.6, CHCl₃); IR (neat) 3454 (m), 3370 (m), 3275 (m), 1705 (s), 1699 (s) cm⁻¹; ¹H NMR δ 0.02 (d, J = 8.2 Hz, 6 H), 0.91 (t, J =3.1 Hz, 9 H), 1.33 (s, 9 H), 2.63 (dd, J = 14.0, 10.1 Hz, 1 H), 2.87 (dd, J = 9.7, 4.7 Hz, 1 H), 3.86 (br s, 1 H), 4.33 (br s, 1 H), 4.48 (br d, J = 8.5 Hz, 1 H), 5.18 (br d, J = 10.4 Hz, 1 H), 5.31 (dt, J = 17.4, 1.7 Hz, 1 H), 5.80–5.92 (m, 1 H), 7.13–7.28 (m, 5 H); $^{13}\mathrm{C}$ NMR δ –5.0, –4.4, 18.3, 25.9, 28.4, 34.9, 56.3, 74.8, 79.1, 116.2, 126.1, 128.3, 129.2, 138.1, 138.8, 155.4; MS (EI), m/z (%) 392 [M + 1] (16); HRMS (EI) calcd for C₂₂H₃₇NO₃Si 391.25427, found 391.25229.

(3R,4S)-N-(tert-Butoxycarbonyl)-4-amino-3-(tert-butyldimethylsilyloxy)-1-hydroxy-5-phenylpentane (14). To a solution of 13 (1.50 g, 3.84 mmol) in THF (33 mL) was added 9-borabicyclo[3.3.1]nonane (11.2 mL, 0.5 M solution in hexane, 5.60 mmol) at room temperature. The reaction mixture was stirred for 20 h before it was treated successively with EtOH (7 mL), 6 N NaOH (2.4 mL), and 30% H_2O_2 (4.7 mL). The mixture was heated at 50 °C for 1 h, cooled to room temperature, and extracted with ethyl acetate several times. The combined organic layers were washed with water and brine, dried (Na₂SO₄), filtered, and concentrated in vacuo. Pure 14 (1.13 g, 72%) was obtained by flash chromatography (25% ethyl acetate in petroleum ether) as colorless oil: TLC (30% ethyl acetate in petroleum ether): $R_f = 0.45$, $[\alpha]^{23}_{D} = -24.9$ (*c* 1.0, CHCl₃); IR (neat) 3453 (s), 1699 (s) cm⁻¹; ¹H NMR δ -0.01 (d, J = 2.43 Hz, 6 H), 0.85 (t, J = 3.1 Hz, 9 H), 1.25 (s, 9 H), 1.71 (dd, J = 6.4, 6.1 Hz, 2 H), 2.48-2.66 (m, 2 H), 2.80-2.89 (m, 1 H), 3.66 (br d, J = 6.7 Hz, 1 H), 3.69 (br d, J = 5.5 Hz, 1 H), 3.81 (br s, 1 H), 3.90 (br s, 1 H), 4.51 (d, J = 8.6 Hz, 1 H), 7.17-7.23 (m, 2 H), 7.08-7.14 (m, 3 H); ¹³C NMR δ -4.5, -4.6, 18.1, 25.9, 28.3, 36.1, 55.6, 59.4, 72.1, 79.4, 126.3, 128.4, 129.2, 138.7, 155.7; MS (EI), m/z (%) 410 $[M^+ + 1]$ (6); HRMS (EI) calcd for C₂₂H₄₀NO₄Si 410.272663, found 410.26828.

tert-Butyl (2S,3R)-2-Benzyl-3-[tert-butyl(dimethyl)silyloxy]-5-oxo-1-pyrrolidinecarboxylate (15). A mixture of the alcohol 14 (0.500 g, 1.23 mmol), PDC (1.73 g, 4.60 mmol), and DMF (5.5 mL) was stirred at room temperature for 18 h. The resulting mixture was poured into water (35 mL) and extracted with CH_2Cl_2 (3 × 50 mL). The extract was washed with 5% HCl (1 \times 50 mL) and brine (1 \times 50 mL), dried with MgSO₄, filtered, and evaporated under reduced pressure. The residue was purified by flash chromatography (25% ethyl acetate in petroleum ether) to give compound 15 (0.37 g, 75%) as a colorless oil which solidified, mp 71-72 °C: TLC (25% ethyl acetate in petroleum ether): $R_f = 0.57$; $[\alpha]^{21}_{D} = +10.7$ (*c* 1.0, CHCl₃); IR (neat) 1788 (s), 1703 (s) cm⁻¹; ¹H NMR δ -0.31 (d, J = 4.3 Hz, 6 H), 0.66 (t, J = 3.1 Hz, 9 H), 1.52 (s, 9 H), 2.22 (d, J = 17.7 Hz, 1 H), 2.43 (dd, J = 3.1, 10.4 Hz, 1 H), 2.57 (dd, J = 12.2, 5.5 Hz, 1 H), 3.11 (dd, J = 10.1, 3.5 Hz, 1 H), 3.99 (d, J = 4.9 Hz, 1 H), 4.08 (dd, J = 6.7, 3.7 Hz, 1 H), 7.11–7.30 (m, 5 H); ¹³C NMR δ -5.2, 17.7, 25.6, 28.2, 38.0, 41.4, 66.9, 69.2, 83.1, 127.1, 128.9, 129.3, 136.7, 150.1, 172.8; MS (EI), *m*/*z* (%) 406 [M⁺ + 1] (3.7); HRMS (EI) calcd for C22H35NO4Si 405.23353, found 405.23498.

Methyl (3R,4S)-4-[(tert-Butoxycarbonyl)amino]-3-[tertbutyl(dimethyl)silyloxy]-5-pentanoate (16). To a stirred solution of 15 (0.500 g, 1.23 mmol) in methanol (15 mL) was added cesium carbonate (0.081 g, 0.25 mmol) at 0 °C, and the reaction mixture was stirred at room temperature for 2 h. Then it was quenched with citric acid, and the product was extracted with ethyl acetate, dried (Na₂SO₄), filtered, and concentrated in vacuo. Purification of the residue by flash chromatography (15% ethyl acetate in petroleum ether) gave 0.271 g (50%) of the ester 16 as colorless oil: TLC (20% ethyl acetate in petroleum ether): $R_f = 0.64$; $[\alpha]^{22}_{D} = -19.7$ (*c* 0.38, CHCl₃); IR (neat) 1741 (s), 1703 (s) cm⁻¹; ¹H NMR δ 0.00 (s, 3 H), 0.06 (d, J = 1.5 Hz, 3 H), 0.85–0.89 (complex, 9 H), 1.27 (s, 9 H), 2.47 (d, J = 2.8Hz, 1 H), 2.50 (d, J = 1.5 Hz, 1 H), 2.92 (dd, J = 9.5, 4.6 Hz, 1 H), 2.53-2.56 (m, 1 H), 3.81 (s, 3 H), 4.07 (br s, 1 H), 4.24 (br s, 2 H), 4.40 (br s, 1 H), 7.13–7.28 (m, 5 H); $^{13}\mathrm{C}$ NMR δ –4.7, 18.1, 25.9, 28.3, 35.9, 39.9, 51.7, 56.3, 71.4, 79.3, 126.3, 128.4, 129.2, 138.3, 155.2, 171.7; MS (EI), m/z (%) 364 [M⁺ - OtBu]; HRMS (EI) calcd for $C_{23}H_{39}NO_5Si - OtBu 364.19441$, found 364.19110.

Acknowledgment. Financial support by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged. G. C. G. Pais thanks the Alexander von Humboldt foundation for a postdoctoral fellowship.

Supporting Information Available: NMR spectra of compounds prepared. This material is available free of charge via the Internet at http://pubs.acs.org.

JO990200X